Dynamic-contrast enhanced magnetic resonance imaging (DCE-MRI) is used for detailed characterization of pathology of lesions sites, such as brain tumors, by quantitative analysis of tracer's data through the use of pharmacokinetic (PK) models. A key component for PK models in DCE-MRI is the estimation of the concentration-time profile of the tracer in a nearby vessel, referred as Arterial Input Function (AIF). The aim of this work was to assess through full body physiologically-based pharmacokinetic (PBPK) model approaches the PK profile of gadoteric acid (Gd-DOTA) and explore potential application for parameter estimation in DCE-MRI based on PBPK-derived AIFs. The PBPK simulations were generated through Simcyp(®) platform and the predicted PK parameters for Gd-DOTA were compared with available clinical data regarding healthy volunteers and renal impairment patients. The assessment of DCE-MRI parameters was implemented by utilizing similar virtual profiles based on gender, age and weight to clinical profiles of patients diagnosed with glioblastoma multiforme. The PBPK-derived AIFs were then used to compute DCE-MRI parameters through the Extended Tofts Model and compared with the corresponding ones derived from image-based AIF computation. The comparison involved: (i) image measured AIF of patients vs AIF of in silico profile, and, (ii) population average AIF vs in silico mean AIFs. The results indicate that PBPK-derived AIFs allowed the estimation of comparable imaging biomarkers with those calculated from typical DCE-MRI image analysis. The incorporation of PBPK models and potential utilization of in silico profiles to real patient data, can provide new perspectives in DCE-MRI parameter estimation and data analysis.
Keywords: AIF; DCE–MRI; Gd-DOTA; Glioblastoma; PBPK; Pharmacokinetics; Simcyp; Tumor.