Bacteria utilize a heme/non-heme enzyme system to detoxify nitric oxide (NO) to N2O. In order to probe the capacity of a single-heme system to mediate this NO-to-N2O transformation, various scenarios for addition of electrons, protons, and a second NO molecule to a heme nitrosyl to generate N2O were explored by density functional theory calculations. We describe, utilizing this single-heme system, several stepwise intermediates along pathways that enable the critical N-N bond formation step yielding the desired Fe-N2O product. We also report a hitherto unreported directional second protonation that results in either productive N2O formation with loss of water, or formation of a non-productive hyponitrous acid adduct Fe{HONNOH}.
Keywords: Density functional theory; Hyponitrite; Iron porphine; Nitric oxide coupling; Nitrous oxide.
Copyright © 2016 Elsevier Inc. All rights reserved.