HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism

Sci Rep. 2016 Sep 20:6:33636. doi: 10.1038/srep33636.

Abstract

Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Cell Survival / genetics
  • Disease Models, Animal
  • Endothelium / metabolism*
  • Endothelium / pathology
  • Gene Expression Regulation
  • HSP70 Heat-Shock Proteins / genetics*
  • Humans
  • Male
  • Mice
  • Mice, Transgenic
  • Myocardial Infarction / genetics
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Reperfusion Injury / genetics*
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / physiopathology
  • Myocytes, Cardiac / metabolism
  • Neutrophil Infiltration
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction
  • TOR Serine-Threonine Kinases / metabolism*
  • Tight Junctions / metabolism
  • Tight Junctions / ultrastructure
  • Vascular Cell Adhesion Molecule-1 / metabolism
  • Ventricular Dysfunction

Substances

  • HSP70 Heat-Shock Proteins
  • HSPA12B protein, human
  • Vascular Cell Adhesion Molecule-1
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases