Using the indirect immunofluorescence technique, immunoreactivity (IR) to three mammalian and one invertebrate regulatory peptide has been demonstrated in the nervous system of the monogenean gill parasite Diclidophora merlangi. IR to pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY) and FMRFamide was evident throughout central and peripheral nervous tissues, whereas vasoactive intestinal polypeptide (VIP)-IR was confined to a portion of the longitudinal ventral nerve cords. Staining patterns revealed the orthogonal arrangement of the nervous system consisting of paired cerebral ganglia, connecting post-pharyngeal commissure, three pairs of longitudinal nerve cords and associated neurones. PP-IR, PYY-IR and FMRFamide-IR were intense throughout the central nervous system of the worm. A small plexus of nerve fibres and somata in each peduncle was immunoreactive for FMRFamide and provided innervation to each of the eight posterior clamps. In the peripheral nervous system, PP-IR, PYY-IR and FMRFamide-IR occurred in an extensive nerve-net with fine, possibly sensory nerve endings in the tegument. PP-IR was also present in nerve fibres in the walls of the ootype, seminal vesicle and uterus. PYY- and FMRFamide-IRs, while evident in nerve fibres of the ootype wall, were also present in a distinct population of cells that encircles the ootype, and which are linked to it by fine cytoplasmic connectives. The majority of these somata were bipolar or multipolar. PYY-IR and FMRFamide-IR were also associated with nerve fibres and bipolar cells in the wall of the vitelline reservoir. Regulatory peptides would appear to play an integral role in neuronal functioning and egg development in D. merlangi.