Self-gated MRI of multiple beat morphologies in the presence of arrhythmias

Magn Reson Med. 2017 Aug;78(2):678-688. doi: 10.1002/mrm.26381. Epub 2016 Aug 31.

Abstract

Purpose: Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias.

Methods: Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies. Image sharpness, contrast, and volume variation were quantified and compared with self-gated MRI. Images were scored for image quality and artifacts. Hemodynamic parameters were computed for each distinct beat morphology in bigeminy and trigeminy subjects and for sinus beats in patients with infrequent premature ventricular contractions.

Results: Images of distinct beat types were reconstructed except for two patients with infrequent premature ventricular contractions. Image contrast and sharpness were similar to sinus self-gated images (contrast = 0.45 ± 0.13 and 0.43 ± 0.15; sharpness = 0.21 ± 0.11 and 0.20 ± 0.05). Visual scoring was highest in self-gated images (4.1 ± 0.3) compared with real-time (3.9 ± 0.4) and ECG-gated cine (3.4 ± 1.5). ECG-gated cine had less artifacts than self-gating (2.3 ± 0.7 and 2.1 ± 0.2), but was affected by misgating in two subjects. Among arrhythmia subjects, post-extrasystole/sinus (58.1 ± 8.6 mL) and interrupted sinus (61.4 ± 5.9 mL) stroke volume was higher than extrasystole (32.0 ± 16.5 mL; P < 0.02).

Conclusion: Self-gated imaging can reconstruct images during ectopy and allowed for quantification of hemodynamic function of different beat morphologies. Magn Reson Med 78:678-688, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Keywords: arrhythmias; cardiovascular magnetic resonance; golden angle; navigators; non-Cartesian; nonperiodic motion; radial; real time; retrospective cine; sensitivity encoding.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Algorithms
  • Arrhythmias, Cardiac / diagnostic imaging*
  • Hemodynamics / physiology
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging, Cine / methods*
  • Male
  • Middle Aged