Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework

ACS Nano. 2016 Sep 27;10(9):8366-75. doi: 10.1021/acsnano.6b03030. Epub 2016 Aug 31.

Abstract

Light-emitting diodes (LEDs) have drawn tremendous potential as a replacement of traditional lighting due to its low-power consumption and longer lifetime. Nowadays, the practical white LEDs (WLED) are contingent on the photon down-conversion of phosphors containing rare-earth elements, which limits its utility, energy, and cost efficiency. In order to resolve the energy crisis and to address the environmental concerns, designing a direct WLED is highly desirable and remains a challenging issue. To circumvent the existing difficulties, in this report, we have designed and demonstrated a direct WLED consisting of a strontium-based metal-organic framework (MOF), {[Sr(ntca)(H2O)2]·H2O}n (1), graphene, and inorganic semiconductors, which can generate a bright white light emission. In addition to the suitable design of a MOF structure, the demonstration of electrically driven white light emission based on a MOF is made possible by the combination of several factors including the unique properties of graphene and the appropriate band alignment between the MOF and semiconductor layer. Because electroluminescence using a MOF as an active material is very rare and intriguing and a direct WLED is also not commonly seen, our work here therefore represents a major discovery which should be very useful and timely for the development of solid-state lighting.

Keywords: electroluminescence; graphene; light-emitting diode; metal−organic frameworks; natural white light; photoluminescence.

Publication types

  • Research Support, Non-U.S. Gov't