MiR-17-92 cluster contributes to the regulation of mammalian development, aging and tumorigenesis. The functional roles of miR-17-92 in pancreatic beta-cells are largely unknown. In this study, we found that conditional deletion of miR-17-92 in mouse pancreatic beta-cells (miR-17-92βKO) significantly reduces glucose tolerance and the first phase of insulin secretion, despite normal ad libitum fed and fasting glucose levels. Proliferation is down-regulated in pancreatic beta-cells after deleting miR-17-92. MiR-17-92βKO mice show higher phosphatase and tensin homologue (PTEN) and lower phosphorylated AKT in islets. Under high fat diet challenge for 16 weeks, miR-17-92βKO mice lose compensation and exhibit higher glucose levels, and lower insulin secretion. Collectively, these data suggest that miR-17-92 is a critical contributor to molecular mechanisms regulating glucose-stimulated insulin secretion and pancreatic beta-cell adaptation under metabolic stress.
Keywords: Adaptation; MiR-17-92; PTEN; Pancreatic beta-cells; Proliferation.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.