Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β

J Alzheimers Dis. 2016 Oct 4;54(3):1157-1167. doi: 10.3233/JAD-160394.

Abstract

Microglia are immune cells of the brain that display a range of functions. Most of our knowledge about microglia biology and function is based on cells from the rodent brain. Species variation in the complexity of the brain and differences in microglia response in the primate when compared with the rodent, require use of adult human microglia in studies of microglia biology. While methods exist for isolation of microglia from postmortem human brains, none allow culturing cells to high passage. Thus cells from the same case could not be used in parallel studies and multiple conditions. Here we report a method, which includes use of growth factors such as granulocyte macrophage colony stimulating factor, for successful culturing of adult human microglia from postmortem human brains up to 28 passages without significant loss of proliferation. Such cultures maintained their phenotype, including uptake of the scavenger receptor ligand acetylated low density lipoprotein and response to the amyloid-β peptide, and were used to extend in vivo studies in the primate brain demonstrating that inhibition of microglia activation protects neurons from amyloid-β toxicity. Significantly, microglia cultured from brains with pathologically confirmed Alzheimer's disease displayed the same characteristics as microglia cultured from normal aged brains. The method described here provides the scientific community with a new and reliable tool for mechanistic studies of human microglia function in health from childhood to old age, and in disease, enhancing the relevance of the findings to the human brain and neurodegenerative conditions.

Keywords: Phenotype; primary human microglia cultures; reactive oxygen species; scavenger receptor ligand.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Amyloid beta-Peptides / toxicity*
  • Cell Proliferation / drug effects
  • Cell Proliferation / physiology*
  • Cells, Cultured
  • Cerebral Cortex / drug effects
  • Cerebral Cortex / metabolism*
  • Cerebral Cortex / pathology*
  • Female
  • Flow Cytometry / methods
  • Humans
  • Male
  • Microglia / drug effects
  • Microglia / metabolism*
  • Microglia / pathology*
  • Middle Aged
  • Reactive Oxygen Species / metabolism

Substances

  • Amyloid beta-Peptides
  • Reactive Oxygen Species