Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion

Int J Cardiovasc Imaging. 2016 Dec;32(12):1715-1723. doi: 10.1007/s10554-016-0964-3. Epub 2016 Aug 18.

Abstract

Current echocardiographic assessments of coronary vascular territories use the 17-segment model and are based on general assumptions of coronary vascular distribution. Fusion of 3D echocardiography (3DE) with multidetector computed tomography (MDCT) derived coronary anatomy may provide a more accurate assessment of left ventricular (LV) territorial function. We aimed to test the feasibility of MDCT and 3DE fusion and to compare territorial longitudinal strain (LS) using the 17-segment model and a MDCT-guided vascular model. 28 patients underwent 320-slice MDCT and transthoracic 3DE on the same day followed by invasive coronary angiography. MDCT (Aquilion ONE, ViSION Edition, Toshiba Medical Systems) and 3DE apical full-volume images (Artida, Toshiba Medical Systems) were fused offline using a dedicated workstation (prototype fusion software, Toshiba Medical Systems). 3DE/MDCT image alignment was assessed by 3 readers using a 4-point scale. Territorial LS was assessed using the 17-segment model and the MDCT-guided vascular model in territories supplied by significantly stenotic and non-significantly stenotic vessels. Successful 3DE/MDCT image alignment was obtained in 86 and 93 % of cases for reader one, and reader two and three, respectively. Fair agreement on the quality of automatic image alignment (intra-class correlation = 0.40) and the success of manual image alignment (Fleiss' Kappa = 0.40) among the readers was found. In territories supplied by non-significantly stenotic left circumflex arteries, LS was significantly higher in the MDCT-guided vascular model compared to the 17-segment model: -15.00 ± 7.17 (mean ± standard deviation) versus -11.87 ± 4.09 (p < 0.05). Fusion of MDCT and 3DE is feasible and provides physiologically meaningful displays of myocardial function.

Keywords: Longitudinal strain; Multidetector computed tomography; Multimodality imaging; Three-dimensional echocardiography.

Publication types

  • Evaluation Study

MeSH terms

  • Aged
  • Computed Tomography Angiography*
  • Coronary Angiography / methods*
  • Coronary Stenosis / diagnostic imaging*
  • Coronary Stenosis / physiopathology
  • Coronary Vessels / diagnostic imaging*
  • Coronary Vessels / physiopathology
  • Echocardiography, Three-Dimensional*
  • Feasibility Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Models, Cardiovascular
  • Multidetector Computed Tomography*
  • Multimodal Imaging / methods*
  • Observer Variation
  • Predictive Value of Tests
  • Radiographic Image Interpretation, Computer-Assisted*
  • Reproducibility of Results
  • Ventricular Function, Left*