Objectives: There is no consensus on whether studies with no observed events in the treatment and control arms, the so-called both-armed zero-event studies, should be included in a meta-analysis of randomised controlled trials (RCTs). Current analytic approaches handled them differently depending on the choice of effect measures and authors' discretion. Our objective is to evaluate the impact of including or excluding both-armed zero-event (BA0E) studies in meta-analysis of RCTs with rare outcome events through a simulation study.
Method: We simulated 2500 data sets for different scenarios varying the parameters of baseline event rate, treatment effect and number of patients in each trial, and between-study variance. We evaluated the performance of commonly used pooling methods in classical meta-analysis-namely, Peto, Mantel-Haenszel with fixed-effects and random-effects models, and inverse variance method with fixed-effects and random-effects models-using bias, root mean square error, length of 95% CI and coverage.
Results: The overall performance of the approaches of including or excluding BA0E studies in meta-analysis varied according to the magnitude of true treatment effect. Including BA0E studies introduced very little bias, decreased mean square error, narrowed the 95% CI and increased the coverage when no true treatment effect existed. However, when a true treatment effect existed, the estimates from the approach of excluding BA0E studies led to smaller bias than including them. Among all evaluated methods, the Peto method excluding BA0E studies gave the least biased results when a true treatment effect existed.
Conclusions: We recommend including BA0E studies when treatment effects are unlikely, but excluding them when there is a decisive treatment effect. Providing results of including and excluding BA0E studies to assess the robustness of the pooled estimated effect is a sensible way to communicate the results of a meta-analysis when the treatment effects are unclear.
Keywords: both-armed zero-event; meta-analysis; rare event outcome; simulation.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/