From 1 January to 31 December 2014, 27 institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aim of AESOP 2014 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 952 unique episodes of bacteraemia investigated, 94.4% were caused by either E. faecalis (54.9%) or E. faecium (39.9%). Ampicillin resistance was detected in 0.6% of E. faecalis and in 89.4% of E. faecium. Vancomycin non-susceptibility was reported in 0.2% and 46.1% of E. faecalis and E. faecium respectively. Overall 51.1% of E. faecium harboured vanA or vanB genes. For the vanA/B positive E. faecium isolates, 81.5% harboured vanB genes and 18.5% vanA genes. The percentage of E. faecium bacteraemia isolates resistant to vancomycin in Australia is significantly higher than that seen in most European countries. E. faecium consisted of 113 pulsed-field gel electrophoresis pulsotypes of which 68.9% of isolates were classified into 14 major pulsotypes containing 5 or more isolates. Multilocus sequence typing grouped the 14 major pulsotypes into clonal cluster 17, a major hospital-adapted polyclonal E. faecium cluster. The geographical distribution of the 4 predominant sequence types (ST203, ST796, ST555 and ST17) varied with only ST203 identified across most regions of Australia. Overall 74.7% of isolates belonging to the four predominant STs harboured vanA or vanB genes. In conclusion, the AESOP 2014 has shown enterococcal bacteraemias in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA or vanB E. faecium, which have limited treatment options.