Cisplatin (DDP) based chemotherapy is still the main strategy of human gastric cancer (GC) treatment. However, drug resistance is a major obstacle for DDP chemotherapy. Recent studies indicated that the resistance could be modulated by the regulation of dysregulated microRNAs (miRs). Previous study also found miR-34a was associated with cell proliferation and apoptosis in human GC; however, the relationship between miR-34a and DDP resistance still remains unexplored. The purpose of this study was to investigate whether miR-34a is associated with DDP resistance in human GC cells. Our study found that the expression of miR-34a was significantly decreased in DDP resistance human GC tissues and DDP resistance human GC SGC7901/DDP cells compared with normal GC tissues and cells. Upregulation of miR-34a enhanced the DDP sensitivity of SGC7901/DDP cells to DDP through the inhibition of cell proliferation and induction of cell apoptosis; on the other hand downregulation of miR-34a could weaken the DDP sensitivity of SGC7901 cells to DDP. Further study found that MET was a direct target of miR-34a and the regulation of MET could affect the DDP sensitivity of SGC7901/DDP cells. Moreover, our study also indicated that up-regulation of miR-34a could decrease the expression of MET in SGC7901/DDP cells. Therefore, our findings suggested miR-34a could modulate human gastric cancer cell DDP sensitivity by regulation of cell proliferation and apoptosis via targeting MET, potentially benefiting human GC treatment in the future.