Stramenopiles or heterokonts constitute one of the most speciose and diverse clades of protists. It includes ecologically important algae (such as diatoms or large multicellular brown seaweeds), as well as heterotrophic (e.g., bicosoecids, MAST groups) and parasitic (e.g., Blastocystis, oomycetes) species. Despite their evolutionary and ecological relevance, deep phylogenetic relationships among stramenopile groups, inferred mostly from small-subunit rDNA phylogenies, remain unresolved, especially for the heterotrophic taxa. Taking advantage of recently released stramenopile transcriptome and genome sequences, as well as data from the genomic assembly of the MAST-3 species Incisomonas marina generated in our laboratory, we have carried out the first extensive phylogenomic analysis of stramenopiles, including representatives of most major lineages. Our analyses, based on a large data set of 339 widely distributed proteins, strongly support a root of stramenopiles lying between two clades, Bigyra and Gyrista (Pseudofungi plus Ochrophyta). Additionally, our analyses challenge the Phaeista-Khakista dichotomy of photosynthetic stramenopiles (ochrophytes) as two groups previously considered to be part of the Phaeista (Pelagophyceae and Dictyochophyceae), branch with strong support with the Khakista (Bolidophyceae and Diatomeae). We propose a new classification of ochrophytes within the two groups Chrysista and Diatomista to reflect the new phylogenomic results. Our stramenopile phylogeny provides a robust phylogenetic framework to investigate the evolution and diversification of this group of ecologically relevant protists.
Keywords: Bigyra; Chrysista; Diatomista; Gyrista; phylogenomics.
© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.