The mechanisms regulating transcript turnover are key processes in the regulation of gene expression. The list of proteins involved in mRNAs' degradation is still growing, however, the details of RNase-mRNAs interactions are not fully understood. ZC3H12A is a recently discovered inflammation-related RNase engaged in the control of proinflammatory cytokine transcript turnover. ZC3H12A also regulates its own transcript half-live. Here, we studied the details of this regulation. Our results confirm the importance of the 3'UTR in ZC3H12A-dependent ZC3H12A mRNA degradation. We compared the mouse and human stemloop structures present in this region and discovered that the human conserved stem-loop structure is not sufficient for ZC3H12A-dependent degradation. However, this structure is important for the ZC3H12A mRNA post-transcriptional regulation. Our studies emphasize the importance of the neighboring features of the identified stem-loop structure for its biological activity. Removal of this region together with the stem-loop structure greatly inhibits the ZC3H12A regulation of the investigated 3'-untranslated region (3'UTR).