Connecting Classical QSAR and LERE Analyses Using Modern Molecular Calculations, LERE-QSAR (VI): Hydrolysis of Substituted Hippuric Acid Phenyl Esters by Trypsin

Mol Inform. 2014 Dec;33(11-12):802-14. doi: 10.1002/minf.201400099. Epub 2014 Nov 5.

Abstract

The reaction mechanism of trypsin was studied by applying DFT and ab initio molecular orbital (MO) calculations to complexes of trypsin with a congeneric series of eight para-substituted hippuric acid phenyl esters, for which a previous quantitative structureactivity relationship (QSAR) study revealed nice linearity of Hammett substitution constant σ(-) with logarithmic values of the MichaelisMenten and catalytic rate constants. Based on the LERE procedure, we performed QSAR analyses on each elementary reaction step during the acylation process. The present calculations showed that the rate-determining step during the acylation process is the transition state (TS) between the enzymesubstrate complex (ES) and tetrahedral intermediate (TET), and that the proton transfer occurs from Ser195 to His57, not between His57 and Asp102. The LERE-QSAR analysis statistically suggested that the variation of overall free-energy changes leading to formation of TS is governed mostly by that of activation energies required to form TS from ES. In spite of a very limited number of congeneric ligands in the current work, it is critically essential to clarify and verify physicochemical meanings of a typical QSAR/Chemoinformatics parameter, Hammett σ(-) based on quantum chemical calculations on the proteinligand kinetics; how Hammett σ(-) behaves in terms of proteinligand interaction energies.

Keywords: Hammett σ constant; Proteinligand kinetics; Quantum chemistry; Structureactivity relationships.