IL-6 is a tightly controlled pleiotropic cytokine with hormone-like properties whose levels are frequently altered in cancer and inflammatory diseases. In highly invasive MDA-MB-231 breast cancer cells, basal activity of endogenously expressed calcium sensing receptor (CaSR) promotes IL-6 secretion. Interestingly, upon agonist stimulation, CaSR reduces IL-6 levels whereas it promotes secretion of various other cytokines and growth factors, raising intriguing questions about how CaSR signaling modulates IL-6 secretion. Here, using NPS-2143, which acted as an inverse agonist, we show that IL-6 secretion promoted by constitutive activity of CaSR is mechanistically linked to Gαs/PKC, MEK1/2 and mTORC1 signaling pathways, integrated by transactivated EGFR. On the other hand, agonist-stimulated CaSR engages in a Rab11a-dependent trafficking pathway critical to inhibit constitutive IL-6 secretion via the PI3K/AKT and PKC signaling pathways. These results support the emerging potential of CaSR as a therapeutic target in metastatic breast cancer whose pharmacological modulation would reduce IL-6.
Keywords: Breast cancer; CaSR; Cell signaling; GPCR; IL-6-secretion; Traffic.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.