The reciprocal t(11;22)(q23;q11) is the most common non-Robertsonian constitutional translocation in humans. The tumor-associated 11;22 rearrangement of Ewing sarcoma (ES) and peripheral neuroepithelioma (NE) is cytologically very similar to the 11;22 constitutional rearrangement. Using immunoglobulin light-chain constant region, ETS1 probes, and the technique of in situ hybridization, we previously were able to show that the constitutional and ES/NE breakpoints are different. As a first step toward isolating these translocation junctions and to further distinguish between them, we have made somatic cell hybrids. Cells from a constitutional 46,XX,inv(9),t(11;22) carrier and from an ES cell line with a t(11;22) were separately fused to a hypoxanthine-guanine phosphoribosyltransferase-deficient Chinese hamster cell line (RJK88). Resulting clones were screened with G-banding and Southern hybridization. Hybrid clones derived from the constitutional t(11;22) were established which contained the der(22) and both the der(22) and the der(11). Hybrid clones derived from the ES cell line containing the der(11) were isolated. Using the technique of Southern hybridization we have sublocalized the loci; ApoA1/C3, CD3D, ETS1, PBGD, THY1, D11S29, D11S34, and D11S147 to the region between the two breakpoints on chromosome 11 and V lambda I, V lambda VI, V lambda VII, and D22S10 to the region between the breakpoints on chromosome 22. Using anonymous DNA probes, we found that D22S9 and D22S24 map proximal to the constitutional breakpoint and that D22S15 and D22S32 map distal to the ES breakpoint on chromosome 22.