Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. Matrix metalloproteinases (MMPs) play an important role in breakdown of blood-brain barrier, transmigration, and invasion of immune cells and formation of MS lesions. The aim of present study was to investigate the influence of MMP-2 C-735T and MMP-9 C-1562T variants and their synergism with MMP-7 A-181G on susceptibility to MS. In a case-control study 125 MS patients and 235 healthy individuals from Western Iran were investigated. The various genotypes of MMP-2, MMP-9, and MMP-7 were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In females the presence of MMP-2 C allele was associated with an increased risk of MS (OR = 1.69, p = 0.041). No significant difference was detected between the frequency of MMP-9 T allele in MS patients (8.2%) and controls (12.8%, p = 0.068). The concomitant presence of both MMP-2 C and MMP-7 G alleles was associated with 1.82-fold increased risk of MS (p = 0.002). Also, a synergism was detected between MMP-9 C and MMP-7 G alleles that elevated the risk of MS by 1.5-times (p = 0.035). The presence of haplotype MMP-9 T, MMP-7 G, and MMP-2 C (TGC) compared to haplotype CAG increased the risk of MS by 3.13-fold (p = 0.16). The present study suggests that gene-gene interactions and variants of more genes instead of single gene might play a role in susceptibility to MS. We indicated that synergism between variants of MMP-2, MMP-7, and MMP-9 genes might increase the risk of MS.
Keywords: Haplotype; MMP-2 C-735T; MMP-7 A-181G; MMP-9 C-1562T; multiple sclerosis.