Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule.
Keywords: CO oxidation; Cesium; Cryptomelane; Doping; Gold; Lithium; Titanium.
Copyright © 2016 Elsevier Inc. All rights reserved.