The NiAs-type structure is one of the most common structures in solids, but metal order has been almost exclusively limited to chalcogenides. The synthesis of HfMnSb2 is reported with a novel metal-ordered NiAs-type structure. HfMnSb2 undergoes a conical spin order below 270 K, in marked contrast to conventional magnetic order observed in NiAs-type pnictides. We argue that the layered arrangement of Hf and Mn makes it a quasi 2D magnet, where the Mn layers with localized magnetic moments (Mn(2+) ; S=5/2) can interact only through RKKY interactions, instead of metal-metal bonding that is otherwise dominant for typical NiAs-type pnictides. This result suggests that controlling order-disorder in NiAs-type pnictides enables a study of 2D-to-3D crossover behavior in itinerant magnetic system.
Keywords: NiAs structure; cation order; conical spin order; pnictides; solid-state structures.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.