Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux

Clin Sci (Lond). 2016 Sep 1;130(18):1641-53. doi: 10.1042/CS20160082. Epub 2016 Jun 23.

Abstract

Polydatin (PD), a resveratrol (RES) glycoside, has a stronger antioxidative effect than RES. It is known that RES is an autophagic enhancer and exerts a cardioprotective effect against ischaemia/reperfusion (I/R) injury. However, the effect of PD post-treatment on myocardial I/R injury remains unclear. In the present study, we investigated the influences of PD post-treatment on myocardial I/R injury and autophagy. C57BL/6 mice underwent left coronary artery (LCA) occlusion and cultured neonatal rat cardiomyocytes (NRCs) subjected to hypoxia were treated with vehicle or PD during reperfusion or re-oxygenation. We noted that PD enhanced autophagy and decreased apoptosis during I/R or hypoxia/reoxygenation (H/R), and this effect was antagonized by co-treatment with adenovirus carrying short hairpin RNA for Beclin 1 and 3-methyladenine (3-MA), an autophagic inhibitor. Compared with vehicle-treated mice, PD-treated mice had a significantly smaller myocardial infarct size (IS) and a higher left ventricular fractional shortening (LVFS) and ejection fraction (EF), whereas these effects were partly reversed by 3-MA. Furthermore, in the PD-treated NRCs, tandem fluorescent mRFP-GFP-LC3 assay showed abundant clearance of autophagosomes with an enhanced autophagic flux, and co-treatment with Bafilomycin A1 (Baf), a lysosomal inhibitor, indicated that PD promoted the degradation of autolysosome. In addition, PD post-treatment reduced mitochondrial membrane potential and cellular reactive oxygen species (ROS) production in NRCs, and these effects were partially blocked by Baf. These findings indicate that PD post-treatment limits myocardial I/R injury by promoting autophagic flux to clear damaged mitochondria to reduce ROS and cell death.

Keywords: apoptosis; autophagy; ischaemia/reperfusion; mitochondrial function; polydatin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Autophagy / drug effects*
  • Glucosides / administration & dosage*
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Reperfusion Injury / drug therapy*
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / physiopathology
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / metabolism
  • Stilbenes / administration & dosage*

Substances

  • Glucosides
  • Reactive Oxygen Species
  • Stilbenes
  • polydatin