Background: Studies suggest that the recall-based humoral immune responses to influenza A/H1N1 originates from activated memory B cells. The aim of this study was to identify baseline, early and late blood transcriptional signatures (in peripheral blood mononuclear cells/PBMCs) associated with memory B cell response following influenza vaccination.
Methods: We used pre- and post-vaccination mRNA-Seq transcriptional profiling on samples from 159 subjects (50-74years old) following receipt of seasonal trivalent influenza vaccine containing the A/California/7/2009/H1N1-like virus, and penalized regression modeling to identify associations with influenza A/H1N1-specific memory B cell ELISPOT response after vaccination.
Results: Genesets and genes (p-value range 7.92E(-08) to 0.00018, q-value range 0.00019-0.039) demonstrating significant associations (of gene expression levels) with memory B cell response suggest the importance of metabolic (cholesterol and lipid metabolism-related), cell migration/adhesion, MAP kinase, NF-kB cell signaling (chemokine/cytokine signaling) and transcriptional regulation gene signatures in the development of memory B cell response after influenza vaccination.
Conclusion: Through an unbiased transcriptome-wide profiling approach, our study identified signatures of memory B cell response following influenza vaccination, highlighting the underappreciated role of metabolic changes (among the other immune function-related events) in the regulation of influenza vaccine-induced immune memory.
Keywords: Aging; B-lymphocytes; Enzyme-linked immunospot assay; Gene expression; Immunity, Humoral; Influenza A virus, H1N1 subtype; Influenza vaccines; Influenza, Human; RNA; Sequence analysis; Vaccination.
Copyright © 2016 Elsevier Ltd. All rights reserved.