Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations

J Med Chem. 2016 Jul 14;59(13):6493-500. doi: 10.1021/acs.jmedchem.6b00688. Epub 2016 Jun 28.

Abstract

Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Design
  • Folic Acid / metabolism
  • Folic Acid Antagonists / chemical synthesis
  • Folic Acid Antagonists / chemistry
  • Folic Acid Antagonists / pharmacology*
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / genetics
  • Methicillin-Resistant Staphylococcus aureus / metabolism
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Molecular Structure
  • Structure-Activity Relationship
  • Trimethoprim / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Folic Acid Antagonists
  • Folic Acid
  • Trimethoprim