Developing ingenious heterostructure photoelectrodes in photoelectrochemical (PEC) cells to both harvest more solar photons and steer desired charge separation flow is a prerequisite challenge for PEC water splitting. Herein a hierarchical p-Si/n-ZnO@Au heterostructure was constructed via large-area growth of one-dimensional (1D) ZnO nanorod arrays (NRAs) on p-Si substrate followed by decorating with Au nanoparticles (NPs), which exhibited remarkably improved photocathode activity for PEC water splitting relative to the bare Si and Si/ZnO NRAs photocathodes. In addition to structural superiorities of 1D NRAs, a series of dynamic contributions from complementary band-gap structure, p-n heterojunctions and Au plasmon towards photon harvesting and charge separation were demonstrated to ensure a well-steered collection of photoelectrons at the exposed ZnO nanorods and Au NPs, enabling substantially improved photocathode performance.