Sympathetic neural activation may be detrimentally involved in tissue injury caused by ischemia-reperfusion (IR). We examined the effects of experimental IR in the forearm on sympathetic nerve response, finger reactive hyperemia, and oxidative stress, and the protection afforded by applying remote ischemic preconditioning (RIPC). Ischemia was induced in the forearm for 20 min in healthy volunteers. RIPC was induced by applying two cycles, 5 min each, of ischemia and reperfusion to the upper leg immediately before IR. We examined muscle sympathetic nerve activity (MSNA) in the contralateral leg using microneurography, finger reactive hyperemia [ischemic reactive hyperemia index (RHI)], erythrocyte production of reduced gluthathione (GSH), and plasma nitric oxide (NO) concentration. In controls (no RIPC; n = 15), IR increased MSNA in the early and late phase of ischemia (70% at 5 min; 101% at 15 min). In subjects who underwent RIPC (n = 15), the increase in MSNA was delayed to the late phase of ischemia and increased only by 40%. GSH increased during ischemia in the control group (P = 0.05), but not in those who underwent RIPC. Nitrate and nitrite concentration, taken as an index of NO availability, decreased during the reperfusion period in control individuals (P < 0.05), while no change was observed in those who underwent RIPC. Experimental IR did not affect RHI in the control condition, but a significant vasodilatory response occurred in the RIPC group (P < 0.05). RIPC attenuated ischemia-induced sympathetic activation, prevented the production of an erythrocyte marker of oxidative stress and the reduction of NO availability, and ameliorated RHI.
Keywords: endothelial function; ischemia-reperfusion injury; oxidative stress; remote conditioning; sympathetic nervous system.
Copyright © 2016 the American Physiological Society.