Purpose: Causal effects in epidemiology are almost invariably studied by considering disease incidence even when prevalence data are used to estimate the causal effect. For example, if certain conditions are met, a prevalence odds ratio can provide a valid estimate of an incidence rate ratio. Our purpose and main result are conditions that assure causal effects on prevalence can be estimated in cross-sectional studies, even when the prevalence odds ratio does not estimate incidence.
Methods: Using a general causal effect definition in a multivariate counterfactual framework, we define causal contrasts that compare prevalences among survivors from a target population had all been exposed at baseline with that prevalence had all been unexposed. Although prevalence is a measure reflecting a moment in time, we consider the time sequence to study causal effects.
Results: Effects defined using a contrast of counterfactual prevalences can be estimated in an experiment and, with conditions provided, in cross-sectional studies. Proper interpretation of the effect includes recognition that the target is the baseline population, defined at the age or time of exposure.
Conclusions: Prevalences are widely reported, readily available measures for assessing disabilities and disease burden. Effects on prevalence are estimable in cross-sectional studies but only if appropriate conditions hold.
Keywords: Causal effects; Cross-sectional studies; Prevalence; Survey; Target population; Validity.
Copyright © 2016 Elsevier Inc. All rights reserved.