Recent public health concerns regarding commercial food products have increased the need to develop an automated method to detect food product-related health events. We developed and verified a method for the early detection of potentially harmful events caused by commercial food products. We collected data from daily internet-based questionnaires examining the presence or absence of symptoms and information about food purchased by the respondents. Using these data, we developed a method to detect possible health concerns regarding commercialized food products. To achieve this, we combined the signal detection method used in the reporting system of adverse effects of pharmaceutical products and the Early Aberration Reporting System (EARS) used by the United States Centers for Disease Control. Whiteleg shrimp (Litopenaeus vannamei), which had odds ratio and Odds(-) of 8.99 and 4.13, respectively, was identified as a possible causative food product for diarrhea and vomiting. In conclusion, this study demonstrated that food distributors can implement post-marketing monitoring of the safety of food products purchased via the internet.