A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola

Plant J. 2016 Sep;87(5):472-83. doi: 10.1111/tpj.13212. Epub 2016 Aug 2.

Abstract

The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes.

Keywords: Bs4; Carolina Gold Select; Oryza sativa; TAL effector; Xanthomonas oryzae; bacterial leaf blight; bacterial leaf streak.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Disease Resistance / genetics
  • Gene Expression Regulation, Plant
  • Oryza / genetics
  • Oryza / metabolism*
  • Oryza / microbiology*
  • Plant Diseases / genetics
  • Plant Diseases / microbiology
  • Plant Leaves / genetics
  • Plant Leaves / metabolism
  • Plant Leaves / microbiology
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Xanthomonas / pathogenicity*

Substances

  • Plant Proteins