Central venous catheter (CVC)-related infections are commonly caused by Staphylococcus epidermidis that is able to form a biofilm on the catheter surface. Many studies involving biofilm formation by Staphylococcus have been published each adopting an own in vitro model. Since the capacity to form a biofilm depends on multiple environmental factors, direct comparison of results obtained in different studies remains challenging. This study characterized the phenotype (strong versus weak biofilm-producers) of S. epidermidis from CVCs in four different in vitro biofilm models, covering differences in material type (glass versus polymer) and nutrient presentation (static versus continuous flow). A good correlation in phenotype was obtained between glass and polymeric surfaces independent of nutrient flow, with 85% correspondence under static growth conditions and 80% under dynamic conditions. A 80% correspondence between static and dynamic conditions on polymeric surfaces could be demonstrated as well. Incubation time had a significant influence on the biofilm phenotype with only 55% correspondence between the dynamic models at different incubation times (48h versus 17h). Screening for the presence of biofilm-related genes only revealed that ica A was correlated with biofilm formation under static but not under dynamic conditions. In conclusion, this study highlights that a high level of standardization is necessary to interpret and compare results of different in vitro biofilm models.
Keywords: Biofilms; In vitro; Staphylococcus epidermidis.
Copyright © 2016 Elsevier B.V. All rights reserved.