Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device

Anal Chem. 2016 Jun 7;88(11):5920-7. doi: 10.1021/acs.analchem.6b00837. Epub 2016 May 17.

Abstract

Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for μm and subμm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Mice
  • Microfluidic Analytical Techniques*
  • Mitochondria, Liver / chemistry*
  • Nanoparticles / chemistry*
  • Organelles / chemistry*
  • Particle Size
  • Proteins / chemistry*
  • Proteins / isolation & purification

Substances

  • Proteins