The present study aimed to identify the potential target genes and underlying molecular mechanisms involved in head and neck squamous cell carcinoma (HNSCC) by bioinformatics analysis. Microarray data of a Gene Expression Omnibus series GSE6631 was downloaded from the Gene Expression Omnibus database, which was generated from paired samples of HNSCC and normal tissue from 22 patients, and was used to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the functions of the identified DEGs. Furthermore, the protein-protein interaction (PPI) network of these DEGs was constructed using Cytoscape software. Between HNSCC and normal samples there was a difference in 419 DEGs, including 196 upregulated and 223 downregulated genes. The upregulated DEGs were mainly enriched in GO terms of cell adhesion, extracellular matrix (ECM) organization and collagen metabolic process, while the downregulated DEGs were mainly associated with epidermis development and epidermal cell differentiation. The DEGs were enriched in pathways such as ECM-receptor interaction, focal adhesion and drug metabolism. Fibronectin 1 (FN1), epidermal growth factor receptor (EGFR), collagen type I alpha 1 (COL1A1) and matrix metallopeptidase-9 (MMP-9) were hub nodes in the PPI network. These results suggested that cell adhesion and drug metabolism may be associated with HNSCC development, and genes such as FN1, EGFR, COL4A1 and MMP-9 may be potential therapeutic target genes in HNSCC.
Keywords: bioinformatics analysis; differentially expressed genes; head and neck squamous cell carcinoma; molecular mechanism.