In this work, we introduce electrospinning to prepare magnetic enantioselective material for the first time. Multianalytical tools were used to characterize the resulted magnetic cellulose tris-(4-methylbenzoate) particles including transmission electron microscopy, SEM, FTIR spectroscopy, thermogravimetric analysis, X-ray diffractometer. Under the optimum conditions, the resulted particles were well-shaped sphere with a diameter range of 800 nm to 2 μm and high magnetic sensitivity. The enantioselectivity of the adsorbents was evaluated using racemic ibuprofen as a model drug; an e.e. value of -4.78% (where e.e. is enantiomeric excess) was achieved in a single adsorption stage. We hope that our finding provides an efficient and economical procedure for the preparation of magnetic enantioselective materials with high selectivity and reproducibility.
Keywords: Cellulose tris-(4-methylbenzoate); Electrospinning; Magnetic enantioselective materials; Racemic ibuprofen.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.