Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge

Curr Biol. 2016 May 23;26(10):1312-8. doi: 10.1016/j.cub.2016.03.028. Epub 2016 Apr 21.

Abstract

At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Actin-Related Protein 2-3 Complex / genetics*
  • Actin-Related Protein 2-3 Complex / metabolism
  • Fibroblasts / metabolism
  • Humans
  • Polymerization
  • Protein Isoforms
  • Pseudopodia / genetics*
  • Pseudopodia / metabolism
  • Tropomyosin / genetics*
  • Tropomyosin / metabolism

Substances

  • Actin-Related Protein 2-3 Complex
  • Protein Isoforms
  • TPM1 protein, human
  • Tropomyosin