Increasing the active edge sites of molybdenum disulfide (MoS2 ) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen-evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut-shaped Cu7 S4 @MoS2 hetero-nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm(-2) current density at only 206 mV overpotential using a carbon-rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non-precious chalcogenide nanoframe catalysts.
Keywords: electrocatalysis; hydrogen-evolution reaction; molybdenum disulfides; nanoframes.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.