Childhood infection with Epstein-Barr virus (EBV) is often asymptomatic and may result in mild flu-like symptoms, but exposure during adolescence and young adulthood can lead to acute infectious mononucleosis (AIM) with a pathology characterized by swollen lymph nodes, sore throat, and severe fatigue lasting weeks or months. A vaccine targeting the envelope glycoprotein gp350 adjuvanted with aluminum hydroxide complexed with the TLR4 agonist monophosphoryl lipid A (MPLA) achieved a 78% reduction in AIM incidence in a small phase II trial of college-age individuals, but development of this vaccine was halted by the manufacturer. Here, we report the evaluation in mice and rabbits of an EBV-gp350 vaccine combined with an adjuvant composed of the synthetic TLR4 agonist glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE). In mice, GLA/SE-adjuvanted gp350 generated high IgG titers (both IgG1 and IgG2a/c subtypes), elevated EBV-neutralizing antibody titers, and robust poly-functional anti-gp350 CD4(+) T cell responses. In addition, GLA/SE routinely demonstrated superior performance over aluminum hydroxide in all immunological readouts, including induction of durable neutralizing antibody titers out to at least 1 year post-vaccination. Both components of the GLA/SE adjuvant were found to be required to get optimal responses in both arms of the immune response: specifically, SE for neutralizing antibodies and GLA for induction of T cell responses. Furthermore, this vaccine also elicited high neutralizing antibody titers in a second species, rabbit. These promising results suggest that clinical development of a vaccine comprised of EBV-gp350 plus GLA/SE has the potential to prevent AIM in post-adolescents.
Keywords: Adjuvants; Epstein–Barr virus; GLA; Gp350; Infectious mononucleosis.
Copyright © 2016 Elsevier Ltd. All rights reserved.