Background: Despite resuscitation after trauma, microcirculatory abnormalities are known to persist in post-shock multiorgan dysfunction. The high-molecular weight polymer polyethylene oxide (PEO) (>10(6) Da), a classic drag-reducing polymer, can improve hemorrhagic shock (HS)-induced hemodynamic abnormalities in rats.
Materials and methods: We examined the effects of PEO on microcirculation and on changes in multiple organs after shock. After the spinotrapezius muscle was prepared, HS was induced in Sprague-Dawley rats. Drug administration (normal saline or PEO) was performed 2 h after shock followed by infusion of shed blood.
Results: The velocity, blood flow, and functional capillary density in the shock + PEO group were significantly higher than those in the shock + normal saline group. Moreover, the kidney, liver, and lung function was improved, resulting in prolonged survival time. Our findings indicate that intravenous infusion of PEO can ameliorate shock-associated organ dysfunction and prolong survival time in severe HS, which may be a result of increased arteriolar blood velocity, blood flow, and functional capillary density.
Conclusions: PEO could have potential clinical application in the treatment of shock-induced multiorgan dysfunction.
Keywords: Drag-reducing polymer (DRP); Hemorrhagic shock; Microcirculation; Polyethylene oxide; Sprague–Dawley rats.
Copyright © 2016 Elsevier Inc. All rights reserved.