SIRT1 is a multifaceted NAD+-dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a novel mechanism of SIRT1-induced hepatocellular carcinoma (HCC) metastasis. SIRT1 overexpression was frequently detected in human HCC specimens and was associated with microvascular invasion (P = 0.0039), advanced tumor node metastasis (TNM) stages (P = 0.0016), HCC recurrence (P = 0.021) and poor outcomes (P = 0.039). Lentivirus-mediated knockdown of SIRT1 in MHCC97H cells reduced invasion and metastasis in vitro and in vivo. SIRT1 depletion attenuated mitochondrial biogenesis and adenosine triphosphate (ATP) production but did not affect epithelial-mesenchymal transition. Elevated SIRT1 expression strongly correlated with the upregulation of PGC-1α in HCC specimens, and ectopic expression of SIRT1 increased PGC-1α levels. In cell assays and an orthotopic transplantation model, PGC-1α overexpression reversed the inhibitory effects of SIRT1 depletion on invasion and metastasis by enhancing mitochondrial biogenesis. These findings reveal the involvement of SIRT1 in HCC metastasis and provide a rationale for exploring therapeutic targets against the SIRT1/PGC-1α axis.
Keywords: PGC-1α; SIRT1; hepatocellular carcinoma; metastasis; mitochondrial biogenesis.