Epigenetic regulation in heart failure

Curr Opin Cardiol. 2016 May;31(3):255-65. doi: 10.1097/HCO.0000000000000276.

Abstract

Purpose of review: This article provides an overview, highlighting recent findings, of a major mechanism of gene regulation and its relevance to the pathophysiology of heart failure.

Recent findings: The syndrome of heart failure is a complex and highly prevalent condition, one in which the heart undergoes substantial structural remodeling. Triggered by a wide range of disease-related cues, heart failure pathophysiology is governed by both genetic and epigenetic events. Epigenetic mechanisms, such as chromatin/DNA modifications and noncoding RNAs, have emerged as molecular transducers of environmental stimuli to control gene expression. Here, we emphasize metabolic milieu, aging, and hemodynamic stress as they impact the epigenetic landscape of the myocardium.

Summary: Recent studies in multiple fields, including cancer, stem cells, development, and cardiovascular biology, have uncovered biochemical ties linking epigenetic machinery and cellular energetics and mitochondrial function. Elucidation of these connections will afford molecular insights into long-established epidemiological observations. With time, exploitation of the epigenetic machinery therapeutically may emerge with clinical relevance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acetylation
  • Animals
  • Chromatin / metabolism
  • DNA Methylation
  • DNA, Mitochondrial / metabolism*
  • Epigenesis, Genetic*
  • Heart Failure / etiology*
  • Humans
  • RNA, Untranslated

Substances

  • Chromatin
  • DNA, Mitochondrial
  • RNA, Untranslated