Background: Magnetic resonance vessel wall imaging (VWI) techniques have been developed to assess atherosclerotic plaques in intracranial arteries, which are a cardinal cause of ischemic stroke. However, the clinical roles of plaque-related vulnerability and inflammation remain unclear. Hence, we evaluated plaque characteristics using VWI of the proximal middle cerebral artery (M1) in patients with acute ischemic stroke.
Methods: We prospectively examined 30 consecutive patients with acute noncardioembolic stroke in the M1 territory using pre-/postcontrast T1-weighted (T1W) three-dimensional (3D) VWI with a 3-Tesla scanner. The contrast ratio (CR) and contrast enhancement of the plaques were measured bilaterally at M1.
Results: Plaques were identified in the bilateral M1s of all patients, and no substantial stenosis existed. The M1 plaque CRs ipsilateral to the infarct (46.7%-67.9%) were significantly higher than the plaque CRs on the contralateral side (34.3%-69.4%), particularly in patients with lacunar infarcts (P <.01). In contrast, the occurrence of plaque enhancement was not different between the ipsilateral (20.0%) and contralateral (16.7%) sides. Further, the CRs in the nonlacunar group were significantly higher than the CRs in the lacunar group (P <.05), whereas enhanced plaques tended to be more frequent in the nonlacunar group, but this difference was not significant (P = .09).
Conclusions: T1W 3D-VWI revealed that the signal intensity of M1 plaques was significantly higher in the affected side and in nonlacunar-type infarcts of patients with acute stroke, suggesting that unstable plaques in the M1 can cause stroke events presumably due to atherothrombotic mechanisms.
Keywords: MRI; Vessel wall imaging; atherosclerosis; stroke.
Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.