Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

Aging (Albany NY). 2016 May;8(5):873-88. doi: 10.18632/aging.100933.

Abstract

Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 months) and aged (20 months) Sprague Dawley (SD) rats were subjected to MI/Rin vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising therapeutic interventional target for elderly ischemic heart disease patients.

Keywords: Akt; PHLPP-1; degradation; insulin; myocardial I/R.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / physiology
  • Insulin / metabolism*
  • Insulin / pharmacology
  • Insulin / therapeutic use
  • Myocardial Ischemia / drug therapy
  • Myocardial Ischemia / metabolism
  • Myocardium / metabolism*
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism*
  • Nuclear Proteins / metabolism*
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Reperfusion Injury / drug therapy
  • Reperfusion Injury / metabolism
  • Signal Transduction / drug effects
  • Signal Transduction / physiology*

Substances

  • Insulin
  • Nuclear Proteins
  • Proto-Oncogene Proteins c-akt
  • PHLPP1 protein, rat