[Estimation of Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in Xin'anjiang Reservoir Based on Landsat 8 Data]

Huan Jing Ke Xue. 2015 Dec;36(12):4420-9.
[Article in Chinese]

Abstract

Photosynthetically active radiation (PAR) is defined as the wavelength band of 400 to 700 nm, representing most of the visible solar radiation that could be used for photosynthesis. PAR is attenuated by the absorption and scattering of nonpigment suspended matter, chromophoric dissolved organic matter and phytoplankton, and it plays an important role in determining the density and distribution of aquatic organisms. This study developed an empirical model and presented the spatial-temporal distribution of PAR diffuse attenuation coefficient [Kd (PAR)] for the slightly turbid Xin'anjiang Reservoir based on the in situ ground data and the matching Landsat 8 data. The results showed that the three-hand combinational model of Kd ( PAR) using Band 2, Band 3 and Band 8 could give a reasonable and acceptable estimation accuracy with a determination coefficient of 0. 87. Independent dataset was used to validate the model with a mean relative error of 9.16% and a root mean square error of 0.06 m⁻¹. Therefore, the three-band combination using Landsat 8 data could be used to accurately estimate Kd (PAR) in the slightly turbid Xin'anjiang Reservoir. Kd (PAR) exhibited significant seasonal and spatial differences. Kd (PAR) was higher in autumn (September-November) and summer (June-August) with the average Kd (PAR) of (0.82 ± 0.60) m⁻¹ and (0.77 ± 0.41) m⁻¹, but lower in winter (December-February) and spring (March-May) with the average Kd (PAR) of (0.56 ± 0.50) m⁻¹ and (0.40 ± 0.45 ) m⁻¹, respectively. Spatially, Kd (PAR) ranged from 0.002 to 13.86 m⁻¹ with an average of (0.64 ± 0.49) m⁻¹. The temporal heterogeneity of Kd (PAR) was mainly caused by the seasonal rainfall and seasonal growth of phytoplankton. The spatial heterogeneity was mainly caused by suspended matter concentration derived from watershed inputs and human dredging activity.

MeSH terms

  • China
  • Models, Theoretical
  • Photosynthesis*
  • Phytoplankton
  • Satellite Imagery*
  • Seasons
  • Spatio-Temporal Analysis
  • Sunlight*