Latest aspects of aldosterone actions on the heart muscle

J Physiol Pharmacol. 2016 Feb;67(1):21-30.

Abstract

The genomic action of aldosterone has already been known to the scientific community and is well-documented to a satisfactory degree. However, the existence of rapid, non-genomic aldosterone actions has repeatedly been proven. These actions are apparent to a lot of tissues, among which the cardiac tissue, with the cardiac cells being responsible for the secretion of endogenous aldosterone. In the genomic pathway, the connection between the hormone and its receptor results increased reabsorption of sodium and water and excretion of potassium. Thus, the genomic procedure reacts indirectly on cardiovascular system by altering the blood pressure. New studies have shed light on unknown aspects of the non-genomic mechanism, which is sometimes performed by means of mineralocorticoid receptor (MR), while others through an MR-independent pathway. It is believed that aldosterone exerts its non-genomic action with the help of a different receptor, probably a G protein coupled receptor. A possible target is protein kinase C (PKC), and PKCε is postulated increase the permeability of the membrane of the cardiac cells to sodium, resulting in delayed repolarization and prolongation of action potential. These findings totally agree with and account for the serendipitous finding of our laboratory, that there is a positive correlation between plasma aldosterone levels and left ventricle (LV) contraction duration. Also, aldosterone has been proven to exacerbate the oxidative stress and induce vasoconstriction by acting on the vascular resistance and the cardiac output. Finally, this article deals with the role of aldosterone in cardiac fibrosis and the latest aspects of aldosterone actions on the heart muscle as well as providing a historical overview of the landmarks pertaining aldosterone's research.

Publication types

  • Review

MeSH terms

  • Aldosterone / metabolism*
  • Animals
  • Heart Ventricles / metabolism*
  • Humans
  • Myocardium / metabolism*
  • Receptors, Mineralocorticoid / metabolism
  • Vascular Resistance / physiology
  • Vasoconstriction / physiology

Substances

  • Receptors, Mineralocorticoid
  • Aldosterone