Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Keywords: Alzheimer's disease peptide; Aβ(1–40); CypD; amyloid fibrils; cyclophilin.
© 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.