An In-based metal-organic framework, with 1D nanotubular open channels, In2(OH)(btc)(Hbtc)0.4(L)0.6·3H2O (1), has been synthesized via an in situ ligand reaction, in which 1,2,4-H3btc is partially transformed into the L ligand. Compound 1 exhibits exceptional thermal and chemical stability, especially in water or acidic media. The activated 1 presents highly selective sorption of carbon dioxide (CO2) over dinitrogen. Interestingly, diffuse-reflectance infrared Fourier transform spectroscopy with a carbon monoxide probe molecule demonstrates that both Lewis and Brønsted acid sites are involved in compound 1. As a result, as a heterogeneous Lewis and Brønsted acid bifunctional catalyst, 1 possesses excellent activity and recyclability for chemical fixation of CO2 coupling with epoxides into cyclic carbonates under mild conditions. In addition, the mechanism for the CO2 cycloaddition reaction has also been discussed.