Objectives: Elevated levels of pipecolic acid (PA), α-aminoadipic semialdehyde (AASA) and its cyclic form Δ1-piperideine-6-carboxylate (P6C) are characteristic of pyridoxine dependent epilepsy (PDE), a rare disorder of inborn error of metabolism. Recent studies showed the effectiveness of dietary therapy in PDE patients and emphasized the importance of the assessment of these metabolites for monitoring treatment efficacy. The objective of this study was to develop a robust and sensitive method for simultaneous quantification of AASA-P6C and PA in plasma and urine.
Design and methods: Plasma and urine samples were derivatized with 3N HCl in n-butanol (v/v) and injected onto ACQUITY BEH-C18 column. A gradient of water/methanol containing 0.1% formic acid was used for the chromatographic separation of AASA, P6C and PA. The analytes' concentrations were calculated using their calibration curves and the sum of AASA and P6C (AASA-P6C) was calculated. To evaluate the clinical utility of this test, samples from unaffected controls and patients with confirmed PDE were analyzed.
Results: The performance characteristics of the assay as well as sample stability and interferences were determined. The intra- and inter- assay CVs were ≤2.9% and ≤10.9% for AASA-P6C, and ≤3.3% and ≤12.6% for PA, respectively. Reference ranges for AASA-P6C and PA in plasma and urine were established. Comparison of values obtained from unaffected controls and PDE patients showed high clinical sensitivity and specificity of the assay.
Conclusions: This novel method for the simultaneous quantification of AASA-P6C and PA in plasma and urine can be used in a clinical laboratory setting for the diagnosis and monitoring of patients with PDE.
Keywords: 1-piperideine-6-carboxylate; Alpha-aminoadipic semialdehyde; Pipecolic acid; Pyridoxine dependent epilepsy; UPLC–MS/MS.
Copyright © 2016 Elsevier B.V. All rights reserved.