Phylogenetic tree reconciliation is an important technique for reconstructing the evolutionary histories of species and genes and other dependent entities. Reconciliation is typically performed in a maximum parsimony framework and the number of optimal reconciliations can grow exponentially with the size of the trees, making it difficult to understand the solution space. This paper demonstrates how a small number of reconciliations can be found that collectively contain the most highly supported events in the solution space. While we show that the formal problem is NP-complete, we give a approximation algorithm, experimental results that indicate its effectiveness, and the new DTL-RnB software tool that uses our algorithms to summarize the space of optimal reconciliations (www.cs.hmc.edu/dtlrnb).