Objective: To investigate the effects of the quinoline derivative PQ1 combined with cisplatin on the proliferation and gap junction communication of prostate cancer PC3 cells.
Methods: We cultured in vitro prostate cancer PC3 cells and divided them into DMSO blank control, cisplatin control, and cisplatin (10 mg/ml) plus PQ1 (1, 2, 5, 10, and 15 μmol/L) groups. We measured the proliferation of the prostate cancer PC3 cells, determined the expressions of the connexin 43 (Cx43) mRNA and protein by RT-PCR and Western blot, and compared the indexes among different groups.
Results: Cisplatin combined with PQl at 1 - 10 μmol/L significantly inhibited the proliferation of the PC3 cells and the inhibition rate rose in a concentration- and time-dependent manner, from (48.72 ± 0.98)% vs (50.33 ± 0.62)% at 0 μmol/L to (77.38 ± 1.12)% vs (83.50 ± 1.05)% at 15 μmol/L at 24 and 48 hours (P < 0.05). Compared with the cisplatin control, cisplatin combined with PQ1 at 1, 2, 5, 10, and 15 μmol/L increased the expression of Cx43 mRNA from 0.379 ± 0.113 to 0.669 ± 0.031, 0.831 ± 0. 127, 0.769 ± 0.100, 0.532 ± 0.086, and 0.475 ± 0.134, respectively (P < 0.05), and cisplatin combined with PQ1 at 1, 2, 5, and 10 μmol/L elevated that of Cx43 protein from 0.138 ± 0.146 to 0.263 ± 0.111, 0.306 ± 0.152, 0.415 ± 0.280, and 0.643 ± 0.310, respectively (P < 0.05).
Conclusion: The quinoline derivative PQ1 can promote the gap junction communication of prostate cancer PC3 cells and enhance the killing effect of cisplatin on PC3 cells by upregulating the expressions of Cx43 mRNA and protein.