Deciphering conformational dynamics is crucial for understanding the biological functions of proteins and for designing compounds targeting them. In particular, providing an accurate description of microsecond-millisecond motions opens the opportunity for regulating protein-protein interactions (PPIs) by modulating the dynamics of one interacting partner. Here we analyzed the conformational dynamics of prolyl oligopeptidase (POP) and the effects of active-site-directed inhibitors on the dynamics. We used an integrated structural biology approach based on NMR spectroscopy and SAXS experiments complemented by MD simulations. We found that POP is in a slow equilibrium in solution between open and closed conformations, and that inhibitors effectively abolished this equilibrium by stabilizing the enzyme in the closed conformation.
Keywords: NMR spectroscopy; SAXS; prolyl oligopeptidase; protein dynamics; protein-protein interactions.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.