The cell division cycle 6 (CDc6) protein has been primarily investigated as a component of the pre-replicative complex for the initiation of DNA replication. Some studies have shown that CDc6 played a critical role in the development of human carcinoma. However, the expression and roles of CDc6 in the central nervous system remain unknown. We have performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of CDc6 expression in spinal cord. Western blot have found that CDc6 protein levels first significantly increase, reach a peak at day 3, and then gradually return to normal level at day 14 after SCI. Double immunofluorescence staining showed that CDc6 immunoreactivity was found in neurons, astrocytes, and microglia. Additionally, colocalization of CDc6/active caspase-3 has been detected in neurons and colocalization of CDc6/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, CDc6 depletion by short interfering RNA inhibits astrocyte proliferation and reduces cyclin A and cyclin D1 protein levels. CDc6 knockdown also decreases neuronal apoptosis. We speculate that CDc6 might play crucial roles in CNS pathophysiology after SCI.
Keywords: CDc6; Cell cycle; Neuronal apoptosis; Proliferation; Spinal cord injury.
Copyright © 2016 Elsevier Ltd. All rights reserved.