Clinical Micro-Dose Studies to Explore the Human Pharmacokinetics of Four Selective Inhibitors of Human Nav1.7 Voltage-Dependent Sodium Channels

Clin Pharmacokinet. 2016 Jul;55(7):875-887. doi: 10.1007/s40262-015-0365-0.

Abstract

Background: The emergence of genetic data linking Nav1.7 sodium channel over- and under- expression to human pain signalling has led to an interest in the treatment of chronic pain through inhibition of Nav1.7 channels.

Objective: We describe the pharmacokinetic (PK) results of a clinical microdose study performed with four potent and selective Nav1.7 inhibitors and the subsequent modelling resulting in the selection of a single compound to explore Nav1.7 pharmacology at higher doses.

Methods: A clinical microdose study to investigate the intravenous and oral PK of four compounds (PF-05089771, PF-05150122, PF-05186462 and PF-05241328) was performed in healthy volunteers. PK parameters were derived via noncompartmental analysis. A physiologically-based PK (PBPK) model was used to predict exposure and multiples of Nav1.7 50 % inhibitory concentration (IC50) for each compound at higher doses.

Results: Plasma clearance, volume of distribution and bioavailability ranged from 45 to 392 mL/min/kg, 13 to 36 L/kg and 38 to 110 %, respectively. The PBPK model for PF-05089771 predicted a 1 g oral dose would be required to achieve exposures of approximately 12× Nav1.7 IC50 at maximum concentration (C max), and approximately 3× IC50 after 12 h (minimum concentration [C min] for a twice-daily regimen). Lower multiples of Nav1.7 IC50 were predicted with the same oral doses of PF-05150122, PF-05186462, and PF-05241328. In a subsequent single ascending oral dose clinical study, the predictions for PF-05089771 compared well with observed data.

Conclusion: Based on the human PK data obtained from the microdose study and subsequent modelling, PF-05089771 provided the best opportunity to explore Nav1.7 blockade for the treatment of acute or chronic pain conditions.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Area Under Curve
  • Biological Availability
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Humans
  • Hydrogen-Ion Concentration
  • Male
  • Metabolic Clearance Rate
  • Middle Aged
  • Models, Biological
  • Phenyl Ethers / administration & dosage*
  • Phenyl Ethers / pharmacokinetics*
  • Sulfonamides / administration & dosage*
  • Sulfonamides / pharmacokinetics*
  • Voltage-Gated Sodium Channel Blockers / administration & dosage*
  • Voltage-Gated Sodium Channel Blockers / pharmacokinetics*
  • Young Adult

Substances

  • PF-05089771
  • Phenyl Ethers
  • Sulfonamides
  • Voltage-Gated Sodium Channel Blockers